Pashov Audit Group

BOB Gateway
Security Review

22222222222222222222222222222

‘ b= ‘ Pashov Audit Group BOB Gateway Security Review

Contents
AN o To 10N ol o= 1] g Lo AV A A U o [A € o U o R PP 3
B2 1=l =11 0 1= o PP 3
O 2 =] SO =173 o= oo o PN 3
4, ADOUL BOB GalBWaAY ouiiuiiitiitiitiiteitt ittt a ettt ae et et s s e e et e e s e e aetae et e e s e eaaeat s sneeneeeaneannaananns 4
IR = (ST oW [A2 Y U o o0 21T /2 4
O 1 T 1T 5
Highfindings ..o, 6
[H-01] A lack of a recovery mode can result in locked funds for USErsccvviiiiiiiiiiiiiiiiiieniaas 6
[M-01] Users always pay max fees when an order is acceptedoooeiiiiiiiiiiiiiiiiic e 8
LOW FINAINGS e e e e e e n e 9
[L-01] Inconsistent error classification and data leakage risk ... 9
RS0 I g Tolo) o g <Tot =T o) ol (o T PP 9

2/10

‘ b= ‘ Pashov Audit Group BOB Gateway Security Review

1. About Pashov Audit Group

Pashov Audit Group consists of 40+ freelance security researchers, who are well proven in the
space - most have earned over $100k in public contest rewards, are multi-time champions or
have truly excelled in audits with us. We only work with proven and motivated talent.

With over 300 security audits completed — uncovering and helping patch thousands of
vulnerabilities — the group strives to create the absolute very best audit journey possible.
While 100% security is never possible to guarantee, we do guarantee you our team's best
efforts for your project.

Check out our previous work here or reach out on Twitter @pashovkrum.

2. Disclaimer

A smart contract security review can never verify the complete absence of vulnerabilities. This
is a time, resource and expertise bound effort where we try to find as many vulnerabilities as
possible. We can not guarantee 100% security after the review or even if the review will find
any problems with your smart contracts. Subsequent security reviews, bug bounty programs
and on-chain monitoring are strongly recommended.

3. Risk Classification

Severity Impact: High Impact: Medium Impact: Low

Likelihood: Medium m
Likelihood: Low

Impact

¢ High - leads to a significant material loss of assets in the protocol or significantly harms a
group of users

e Medium - leads to a moderate material loss of assets in the protocol or moderately harms a
group of users

e Low - leads to a minor material loss of assets in the protocol or harms a small group of users

Likelihood

¢ High - attack path is possible with reasonable assumptions that mimic on-chain conditions,
and the cost of the attack is relatively low compared to the amount of funds that can be stolen
or lost

e Medium - only a conditionally incentivized attack vector, but still relatively likely

e Low - has too many or too unlikely assumptions or requires a significant stake by the
attacker with little or no incentive

3/10

https://github.com/pashov/audits
https://twitter.com/pashovkrum

‘ = ‘ Pashov Audit Group BOB Gateway Security Review

4. About BOB Gateway

BOB is a hybrid Layer-2 powered by Bitcoin and Ethereum. The design is such that Bitcoin
users can easily onboard to the BOB L2 without previously holding any Ethereum assets. The
user coordinates with the trusted relayer to reserve some of the available liquidity, sends BTC
on the Bitcoin mainnet and then the relayer can provide a merkle proof to execute a swap on
BOB for an ERC20 token.

BOB Gateway is a bridge solution that enables Bitcoin users to seamlessly onboard to the BOB
L2 by swapping BTC for Ethereum-based assets (like wBTC or tBTC) via a trusted relayer and
smart contracts, without requiring pre-existing ETH holdings.

5. Executive Summary

A time-boxed security review of the bob-collective/bob-gateway repository was done by
Pashov Audit Group, during which Newspace, LordAlive, DadeKuma engaged to review BOB
Gateway. A total of 4 issues were uncovered.

Protocol Summary

Project Name BOB Gateway
Protocol Type Hybrid Bitcoin Layer 2
Timeline August 27th 2025 - August 30th 2025

Review commit hash:
* 6ad820b234dee5fb8f5c72d3e2b58bc7ed1997b9
(bob-collective/bob-gateway)

Fixes review commit hash:
® 4622efb85313feclff764861675a54c89a4290f6
(bob-collective/bob-gateway)

Scope

api_client.rs app.rs error.rs main.rs models.rs

scan_and_process_orders.rs utils.rs

4 /10

https://github.com/bob-collective/bob-gateway/tree/6ad820b234dee5fb8f5c72d3e2b58bc7ed1997b9
https://github.com/bob-collective/bob-gateway/tree/4622efb85313fec1ff764861675a54c89a4290f6

‘ 5 ‘ Pashov Audit Group

6. Findings

Findings count

Severity Amount
High 1
Medium 1
Low 2
Total findings 4

Summary of findings

BOB Gateway Security Review

ID Title Severity Status

A lack of a recovery mode can result in locked

H-01 Resolved

L] funds for users m
Users always pay max fees when an order is

[M-01] Resolved
accepted
Inconsistent error classification and data leakage

[L-01] . Low Resolved
risk

[L-02] Incorrect error log Low Resolved

5/10

‘ = ‘ Pashov Audit Group BOB Gateway Security Review

High findings
[H-01] A lack of a recovery mode can result in locked funds for users

Severity

Impact: High

Likelihood: Medium
Description

The solver is a backend program that continuously polls the L2 chain to identify orders that
can be accepted, enabling funds to be bridged to BTC.

The order fulfillment process involves the following sequential steps:

Update BTC balance.
For each new order, verify its status is valid.

3. For each active order, execute accept_and send btc_ tx :
3.1. Check order rate limits.
3.2. Verify sufficient balance to fulfill the order.
3.3. Create/sign the BTC transaction.
3.4. Validate all required BTC addresses.
3.5. Accept the order on L2 (modifies state).
3.6. Update the database with BTC transaction information (modifies state).
3.7. Send the BTC transaction (modifies state).

The core issue is that some of these steps are not idempotent. State is persisted after each
individual step rather than within a transactional boundary.

This means that if the program is halted at any point during the process (e.g., due to a power
outage, application panic, or unexpected termination), an order can become stuck in an
inconsistent state, resulting in locked funds.

For example, if step 3.5 (accepting the order on L2) succeeds, but the server stops before step
3.6 (updating the database), the order is marked as “accepted” on-chain, but funds are never
bridged.

When the server restarts, the order will not be reprocessed because it is already considered
accepted, leaving the user’s funds locked indefinitely.

6/ 10

‘ 7 ‘ Pashov Audit Group

BOB Gateway Security Review

Recommendations

Consider implementing a recovery mode for the process.
An example implementation could include the following steps:

1. Record the intent to accept an order in the database before accepting the order.

2. Modify the order processing loop to check both all active orders and accepted orders that
have not yet been bridged (saved on intent DB but not bridged yet).

3. Use event logs from the acceptOrder function to verify that an order is accepted by the
legit solver to prevent double-spending.

7/ 10

‘ = ‘ Pashov Audit Group BOB Gateway Security Review

[M-01] Users always pay max fees when an order is accepted

Severity

Impact: Medium

Likelihood: Medium

Description

When a user submits an order, they specify the maximum amount of fees they are willing to
pay (order.satFeesMax). The solver then calculates the expected fees, which include both
the inclusion fee and the protocol fee.

The issue is that the system consistently charges the user the full maximum amount
(order.satFeesMax) rather than the actual calculated fee amount.

This results in users always paying the maximum possible fees even when the actual cost of
the operation is significantly lower, analogous to setting a gas limit and always being charged
the full amount regardless of actual gas used.

Recommendations

Consider the following changes:

let amount_to_send = Amount::from_sat(
- (order.satAmountLocked - order.satFeesMax)

+ (order.satAmountLocked - overall_expected_fees)
.try_into()
.map_err(|_| Error::ConversionError)?,

8/10

https://github.com/bob-collective/bob-gateway/blob/c830767fe18f347eb0577a3d732a616535ee8192/offramp-solver/src/utils.rs#L189
https://github.com/bob-collective/bob-gateway/blob/c830767fe18f347eb0577a3d732a616535ee8192/offramp-solver/src/utils.rs#L202

‘ Pashov Audit Group BOB Gateway Security Review

Low findings

[L-01] Inconsistent error classification and data leakage risk

The error-handling flow currently mixes transient (retryable) issues with permanent failures
and logs raw error messages directly into tracing or external systems such as Sentry. This can
cause:

- Temporary network issues are being escalated as critical errors.

- Business logic errors (e.g., rate-limit exceeded) are being retried indefinitely.

- Sensitive request/response details are being leaked into monitoring systems.

Recommendation - Define a clear error taxonomy separating transient, permanent, and critical
errors.

- Sanitize error messages before logging or sending to Sentry, removing sensitive data.

- Restrict retry logic to transient errors only, while surfacing permanent ones immediately.

[L-02] Incorrect error log

The following error is thrown in verify order_details() when order has insufficient fees
to cover protocol and inclusion fees:

// Ensure the order has sufficient fees to cover protocol and inclusion fees
if fees_in_sats < overall_expected_fees {
return Err(Error::FeesTooLowToAcceptOrder (
params.id.to_string(),
overall_expected fees,
fees_in_sats,
));

However, the FeesToolLowToAcceptOrder is defined as follows in errors.rs

>> #[error("Cannot process order with ID {0}: as expected fees {1} given fees {1}.")]
FeesTooLowToAcceptOrder (String, BigDecimal, BigDecimal),

As seen, no matter how correct the parameters are provided, the message remains distorted.

Also in start _services() , offramp_registry address islogged as offramp owner in
the error message as follows:

let receiver =
offramp_registry.solvers(offramp_owner_address, token_address).call().await?.recipient;

if receiver == Address::ZERO {
eyre::bail! (
"offramp with owner address {} and token address {} is not registered on-chain, or
the receiver is not set.",
>> offramp_registry_address,

9/10

‘ Pashov Audit Group

BOB Gateway Security Review

token_address,
)

The actual owner address is offramp _owner address as used to derive the
as such the message is incorrect.

receiver and

Recommendations

- #[error ("Cannot process order with ID {0}: as expected fees {1} given fees {1}.")]
+ #[error ("Cannot process order with ID {0}: as expected fees {1} given fees {2}.")]
FeesTooLowToAcceptOrder (String, BigDecimal, BigDecimal),

and

if receiver == Address::ZERO {
eyre::bail! (
"offramp with owner address {} and token address {} is not registered on-chain, or
the receiver is not set.",
- offramp_registry_address,
+ offramp_owner_address,
token_address,

)5

10/ 10

	BOB Gateway Security Review
	Contents

	1. About Pashov Audit Group
	2. Disclaimer
	3. Risk Classification
	4. About BOB Gateway
	5. Executive Summary
	Scope

	6. Findings
	Findings count
	Summary of findings

	High findings
	[H-01] A lack of a recovery mode can result in locked funds for users
	Severity
	Description
	Recommendations

	Medium findings
	[M-01] Users always pay max fees when an order is accepted
	Severity
	Description
	Recommendations

	Low findings
	[L-01] Inconsistent error classification and data leakage risk
	[L-02] Incorrect error log

